## FCH2RAIL Final Event Hydrogen Zaragoza, 26 November 2024



## Welcome and Introduction



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.







### Holger Dittus

Project Manager, Project Coordinator FCH2RAIL



## **Project Background**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





## **Project Background**

| renfe            |           | ⊂⁄4F        |                      |  |
|------------------|-----------|-------------|----------------------|--|
| Stemmann-Technik |           | de Portugal |                      |  |
| 🄊 adif           | Hidrógeno | ΤΟΥΟΤΑ      | Fuel Cell Hybrid Pow |  |



| Jan 14, 2020<br>Extending the use cases for FC trains through innovative designs and<br>streamlined administrative framework<br>ID: FCH-01-7-2020 |                          |                                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|--|--|--|--|
| Type of action:                                                                                                                                   |                          |                                                |  |  |  |  |
| • FCH2-IA Innovation action                                                                                                                       |                          |                                                |  |  |  |  |
| Deadline Model : single-stage                                                                                                                     | Opening: 14 January 2020 | Deadline: 29 April 2020 17:00:00 Brussels time |  |  |  |  |
| Open                                                                                                                                              |                          |                                                |  |  |  |  |

#### Main Objectives:

- 1. Develop, build, test and homologate a multi-purpose Fuel Cell Hybrid PowerPack
- 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit
- 3. Propose a normative framework for hydrogen in railway vehicles
- 4. Demonstrate competitiveness of fuel cell traction against existing diesel solutions
- 5. Identify and benchmark innovative solutions to improve energy efficiency





### **Project Consortium**









### Eva Terron

Technical Coordinator FCH2RAIL



## **Project Technical Background**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





## **Technical Project Background**



- What is an Fuel Cell Hybrid PowerPack?
  - Emission-free power generation system,
  - Combines energy provided by Hydrogen Fuel Cells and Batteries
- Why this is **Innovative**?
  - Bi-mode
    - Powered by Fuel Cells and Batteries in non electrified infrastructure
    - Powered from Catenay in electrified sections
    - Batteries can be charged from catenary, saving H2 and increasing the autonomy
  - Modular and Scalable
    - Suitable for very different power and energy requirements
  - Suitable for new trains but also to retrofit existing trains





7

## **Technical Project Background**





• 2 demonstrators have been produced:

### Fuel Cell Hybrid PowerPack



### **Bi-mode train demonstrator**





## **Technical Project Background**

Stemmann-Tochnik Stemmann-Tochnik Adif Hinddam TOYOTA TOYOTA Fuel Cell Hybrid PowerPack for Rail Application

- Authorization of the train demostrator for tests in three Member States of the EU
  - Spain
  - Portugal
  - Germany
- Results and achievements:
  - New technology works well
    - Long demonstration campaign
  - First H2 train in Spain -> commercial service in 6 lines has been demonstrated
  - First H2 train in Portugal -> testing in 1 additional line
  - Testing campaign of the train demonstrator has required refuelling in different locations





European Union







Abraham Fernández Del Rey

**Rolling stock and Innovation Engineer** 

renfe

## **Operator's Technical Perspective**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European 📒 Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





European Union

## **Analysis of Operator Specifics**



Technical analysis of currently used vehicles in diesel services:

- Locomotives+coaches
- DMUs Metric gauge
- DMUs Iberian gauge
- Precise understanding of requirements of Spanish services.
- Study of H2 technology potential application.







## Vehicle requirements: from Civia EMU to H2 demonstrator



Original Civia vehicle 463.199

FCH2Rail demonstrator



Co-funded by the European Union

## **Analysis of Operator Specifics**

Utiel - Valencia FSL - Sagunt - Caudiel

- Yield and discuss data inputs to use in two different simulators (Powerpack and demonstrator dimensioning).
- Results analysis oriented to feasibility in terms of power ٠ and energy.



rente

- Other experiences are not extrapolable to Spanish railways:
  - Vehicles designed to operate through the whole network.
  - Orography is esential in vehicle dimensioning.





## Actual use cases and test lines









| Middle range services                    |               |                |  |  |  |  |
|------------------------------------------|---------------|----------------|--|--|--|--|
| Line                                     | Rolling stock | Traffic volume |  |  |  |  |
| Line                                     | series        | (trains/day)   |  |  |  |  |
| Granada - Algeciras                      | S598          | 2              |  |  |  |  |
| Huelva - Jabugo                          | S598          | 2              |  |  |  |  |
| Sevilla - Almería                        | S599          | 2              |  |  |  |  |
| Sevilla - Málaga                         | S598          | 4              |  |  |  |  |
| Sevilla - Málaga                         | S599          | 4              |  |  |  |  |
| Salamanca - Madrid                       | S599          | 12             |  |  |  |  |
| Salamanca - Valladolid - Palencia        | S594          | 5              |  |  |  |  |
| Valladolid - Palencia - León             | S594          | 6              |  |  |  |  |
| Valladolid - Puebla Sanabria             | S594          | 2              |  |  |  |  |
| Murcia - Cartagena                       | S599          | 10             |  |  |  |  |
| Teruel - Zaragoza                        | S594          | 7              |  |  |  |  |
| Valencia - Alicante - Murcia - Cartagena | S599          | 4              |  |  |  |  |
| Valencia - Teruel - Zaragoza             | S599          | 5              |  |  |  |  |
| Valencia - Xativa - Alcoi                | S592          | 8              |  |  |  |  |
| Zaragoza - Canfranc                      | S596          | 4              |  |  |  |  |
| Zaragoza - Canfranc                      | S599          | 4              |  |  |  |  |
| Madrid - Puertollano - Badajoz           | S599          | 8              |  |  |  |  |
| Madrid - Soria                           | S598          | c              |  |  |  |  |
| Madrid - Soria                           | S599          | 5              |  |  |  |  |
| Madrid - Talavera                        | S599          | 11             |  |  |  |  |
| A Coruña - Ferrol                        | S594          | 6              |  |  |  |  |
| A Coruña - Lugo - Monforte               | S594          | 4              |  |  |  |  |
| A Coruña - Vigo                          | S599          | 29             |  |  |  |  |
| Santiago - Carballiño - Ourense          | S594          | 3              |  |  |  |  |
| Vigo - Ourense - Ponferrada              | S594          | 4              |  |  |  |  |
| Madrid - Siguenza                        | S599          | 9              |  |  |  |  |
| Vigo - Oporto                            | S592          | -              |  |  |  |  |

(\*) Spanish network is in constant evolution. Hence, some of the lines have evolved to electrified services.

#### Agreed by all partners:

| Middle range test services      |               |  |  |  |
|---------------------------------|---------------|--|--|--|
|                                 | Rolling stock |  |  |  |
| Line                            | series        |  |  |  |
| Teruel - Zaragoza               | S594          |  |  |  |
| Valencia - Teruel - Zaragoza    | S599          |  |  |  |
| Zaragoza - Canfranc             | S596          |  |  |  |
| Zaragoza - Canfranc             | S599          |  |  |  |
| Madrid - Soria                  | S598          |  |  |  |
| Madrid - Soria                  | S599          |  |  |  |
| Madrid – Talavera (*)           | S599          |  |  |  |
| A Coruña - Ferrol               | S594          |  |  |  |
| A Coruña - Lugo - Monforte      | S594          |  |  |  |
| A Coruña - Vigo                 | S599          |  |  |  |
| Santiago - Carballiño - Ourense | S594          |  |  |  |
| Vigo - Ourense - Ponferrada     | S594          |  |  |  |
| Vigo - Oporto                   | S592          |  |  |  |

(\*) Extended to Madrid - Cáceres



14

### Conclusions



| Vehicle Related                       |              | Refuelling                      |                              | Other Operational Factors |                              |
|---------------------------------------|--------------|---------------------------------|------------------------------|---------------------------|------------------------------|
| Indicator                             | Status 2024  | Indicator                       | Status 2024                  | Indicator                 | Status 2024                  |
| Vehicle requisites:<br>Performance    | Satisfactory | H2 cost                         | Further research<br>needed   | Fleet scalability         | Further research<br>needed   |
| Vehicle requisites:<br>Power at wheel | Satisfactory | H2 supply chain                 | sufficient for demonstration |                           |                              |
| Vehicle requisites:<br>Autonomy       | Satisfactory | H2 Refuelling                   | Further research<br>needed   | Safety / Security         | sufficient for demonstration |
| Driver's                              | Catiofactory | Homologation                    |                              |                           |                              |
| experience                            | Satisfactory | Indicator                       | Status 2024                  |                           |                              |
| Hybridization<br>behavior             | Satisfactory | Standardization<br>Homologation | Further research<br>needed   | Maintenance               | sufficient for demonstration |



15

Grant Agreement Number: 101006633





### Inés Vadillo Cortázar

Head of R&D Sustainability Projects



# Authorization experience in hydrogen test train in Adif

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





## **Adif Authorization process**







Climbing our mountain:

- Spain: complex orography
- Several tunnels
- Ramps up to 30 ‰





Co-funded by the European Union

## Adif experience





#### Hydrogen tests in Spain

- 1) Tardienta Canfranc\_June 2023
- 2) Torralba Soria\_November.2023
- 3) Zaragoza Teruel\_Dec/Jan 2023
- 4) Madrid Mérida\_March 2024
- 5) Tui Nune (Portugal)\_April 2024
- 6) Ourense Santiago de Compostela April 2024



Co-funded by the European Union

Partnership

## **Emergency management**

- Protective measures and emergency protocol.
- •Contingency plan with operator.
- Risk control and emergency response measures.
- Management Risks in stops, parking
- Evacuation in emergency cases.
- •Tunnel Emergency Plan.
- Communication protocols revision.
- Training



Partnership

Co-funded by the European Union

adif

Fuel Cell Hybrid PowerPack for Rail Application.

### Object: Conduct bi-mode train tests with hydrogen fuel cell.

Authorizations= Consignas

- Delivery of Specific Blocked Rules.
- Scope RFGI by Adif.
- •Same **speed as** the original train.
- 2 drivers + test driver
- + Safety Operational Rules
- -> 4 Authorizations + 4 SOR



adif



Fuel Cell Hybrid PowerPack for Rail Application.



## Lessons learned

### • January 2021

- It is quite "impossible" to run a H<sub>2</sub> train in RFGI.
- ➤There are no protocols for emergencies in case of an H<sub>2</sub> train.
- ➤H<sub>2</sub> train, HRS, and other equipment need to be adapted to safety rail regulations (RD 402).
- A 10.000km test in 10 different lines is not possible due to the daily operation, maintenance, renovation, and electrification works.



### November 2024

- ✓ It is possible to authorize and test an H<sub>2</sub> train in Spain.
- ✓ 1st Authorization gets just about 3 moths after presented to Adif's corporative safety department in 2023.
- ✓ A new emergency document was issued to ensure emergencies and tunnels.
- ✓ 10.000 km test in H<sub>2</sub> during 10 months without any incidents.
- ✓ TRL 7 Train Authorization fullfilt.
- ✓ Decarbonization is possible.





### Conclusions







Co-funded by the **European Union** 





### Francisco Ganhão

Innovation Project Manager



## **Train Demo in Portugal**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





## **Tests in Portugal**

- Only one line Minho line
- The Civia train is not operated / homologated in Portugal
  - Need Civia train drivers for Portugal
  - Speed limitations due the track possession conditions

Grant Agreement Number: 101006633

• Previous knowledge of the tests in Spain

**Infraestruturas** de Portugal





Clean Hydrogen Partnership



# Summary & Outlook

#### Summary

- Authorization process (for TRL7 tests) completed in due time
- Tests done with no incidents
- Coordination between IP, Portuguese regulator (IMT) and safety authorities
- Tests done with the full possession of the line => done by night, reduce period for tests
- First H2 train demonstrator with TRL7 authorisation in Portugal!

### Outlook

- $\rightarrow$  For commercial services more tests and more complex validation process needed
- → No experience with HRS systems in Portuguese network



Fuel Cell Hybrid PowerPack for Rail Application

**Infraestruturas** de Portugal











### Sergio Gascon

Technical Project Manager FCH2RAIL



## Train Manufacturer perspective

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.







### **DEVELOPMENT OF THE FCH POWERPACK**

### **Fuel Cell Hybrid PowerPack Components:**

- Fuel Cells Modules TOYOTA
- OESS (Battery) CAF
- HV DC/DC Converter CAF
- DASEM CAF
- H2 Storage modules CAF/ext. Supplier
- FC Colling System (HT+LT) CAF/ext. Supplier









### INTEGRATION OF THE FCHPP COMPONENTS INTO THE TRAIN DEMONSTRATOR

- An existing CIVIA 3-car EMU has been transformed into a Bi-mode Fuel Cell Hybrid Multiple Unit
- **Two FCH Powerpacks** has been integrated into the CIVIA original traction and control architecture
- Safety analysis was carried out to consider all hazards and mitigation measures to be implemented
- The transformation of the train to be reversible, to roll back the train to its original state and return back to commercial servie









### VALIDATION OF THE TRAIN DEMONSTRATOR



### SERVICE EXPERIENCE DEMOSTRATION



Service experience in 6 additional routes in the Spanish and Portuguese National Network from November 2023 to April 2024 proving the performance and

reliability of the vehicle

FCH<sub>3</sub>RAIL

**37 days** of dynamic testing, covering more than 16,000 km, **10,000 km** of which have been **in hydrogen mode**, and **2,200 kg of H2 consumed** 

#### **Train Service Experience**



https://youtu.be/fFuYwuVSyII







### **OUTCOMES**

#### **Project objectives achieved:**

- Develop, build, test and homologate a multi-purpose Fuel Cell Hybrid PowerPack
- Demonstrate the FCHPP in a Bi-mode H2 multiple unit

#### Additional achievements:

- The battery modules developed by CAF and applied in the demonstrator train has reached the maturity level necessary for its use in commercial service.
- Capability to simulate (model validation) the Fuel Cell Hybrid PowerPack in any operating condition, and implementing the advanced hybridization strategy into the DASEM system to optimize performance and consumption.
- > New and valuable partners of the H2 market have been developed during the project





## CONCLUSIONS



### **AVAILABLE NOW**

**Technological maturity:** Hydrogen technology applied to railways is technically viable and ready to develop railway vehicles with promising performance and reliability.

**Operational suitability:** High-range of service autonomy of a bi-mode H2 train.

### OUTLOOK

**H2 supply chain:** The supply chain of green H2 is not yet sufficiently mature. The logistics of the H2 is complex and the cost is high.

**Commercial Hydrogen Refuelling Solutions** suitable to refuel train fleet are still scarce in the market. High capacity H2 fast refueling not solved, a research topic for next years.

**Regulatory framework:** The current railway approval process does not cover the hydrogen railway vehicles, what makes the approval process uncertain, costly, and time-consuming.









### **Thomas Landtmeters**

Senior Project Manager



## Fuel cell modules in rail application

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





## TOYOTA FUEL CELL MODULE



PCU: Power Control Unit; FCPC: FC Power Control Unit

## X Adaptations made to some components to match application requirements



### **GEN2** Module



- 80kW net power out
- Easy integration and installation
- Integrated DC/DC converter
- As single unit or combined



### ASSEMBLY OF MODULE IN TME BRUSSES Assembly area **Assembly principles**





- First modules assembled in TME
- All TPS principles in place

**TPS: Toyota Production System** 





**European Union** 

FCH,RAIL

Fuel Cell Hybrid PowerPack for Rail Applications

## **BENCH TESTING**



### **Quality Check**



- 1 Fuel Cell Module
- TOYOTA control system
- Functional Check
- Performance Confirmation

### **CAF FCHPP Control check**



- 3 Fuel Cell Module in parallel
- CAF control system
- Functional Check




## **FCM IN OPERATION**

#### **CNH2 TEST BENCH**



- Safety response confirmed
- Tekstbook behaviour

#### **TOYOTA** FCH2RAIL DEMO TRAIN



- No concerns encountered
- No unexpected stops
- FCM always deliver requested power



FCH

Fuel Cell Hybrid PowerPack for Rail Applications





## LEARNING POINTS

- Need more power
- Power density must go up
- Space is precious
- Regulation & Certification  $\rightarrow$  Need standard for FCM\*

\*IEC will publish dedicated FC standard for railway by Jan'25 (IEC 63341-1)

>> For this demonstration project: TOYOTA GEN2 FCM OK

>> For future train: Improvements can be expected on next generation Fuel Cell Modules. FUTURE





Fuel Cell Hybrid PowerPack for Rail Applications



#### Carlos de la Cruz Rodríguez

Head of Simulation, Control and End-Use Unit



## FCHPP testing and HRS development

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European 📒 Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





**European Union** 

## **FCHPP Testbench**



#### Objectives

- To test a complete Fuel Cell Hybrid PowerPack.
- To demonstrate operation and performance of the Fuel Cell Hybrid PowerPack.
- To **know how** the individual equipment performs **before the integration** into the train.
- To **optimize** the **controls and energy** management **system**.

#### Challenges

- How to test a H2 train propulsion system without a train
- Where to find **large facilities** to accommodate huge and heavy equipment
- How to provide high flow and total amount of green H2 and load dissipation required
- How to do it in a complete **safety** manner



Co-funded by the European Union

### **FCHPP Testbench**











**European Union** 

## Modular H<sub>2</sub> Refuelling Station



#### Objectives

- Provide hydrogen for the demonstration train at different locations → Portable design
- Do it with tight budget and time frame and in a safe way
- Manage administrative procedures in different regions

#### Challenges

- Different technical and administrative requirements for different locations
- Lack of normative framework → Protocols and refuelling curves development
- Low availability of components



42

## Modular H<sub>2</sub> Refuelling Station











43

Grant Agreement Number: 101006633

Co-funded by the European Union

## CONCLUSIONS



#### **Conclusions Refuelling station**

- Refuelling station development was initially underestimated.
- We finally developed solutions under challenging conditions in terms of budget and time to carry out the demonstration.

#### **Conclusions FCHPP Testbench**

- Collaboration of all partners involved was key to success, specially CAF P&A
- We validated and optimized the FCHPP systems early before they have been used in the demonstrator train



European Union





### FCHPP test bench "Best Innovation Award" by Clean H2 Partnership





The test bench developed by CAF and CNH2 to test and optimize a full-scale FCHPP "in the lab" received the Best Innovation Award from the Clean Hydrogen Partnership during the EU Hydrogen Week 2024.





Co-funded by the European Union



Fuel Cell Hybrid PowerPack for Rail Applications



#### Lutz Boeck

Head of Center of Competence HVAC



This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





Co-funded by the European Union





# Investigation of alternative cooling/heating technologies

#### Background

- Heating/Ventilation/Air Conditioning (HVAC) is second largest electrical consumer in regional trains
- Significant influence on H2 vehicle range

#### Technologies

- HyPAC: Hydrogen Powered Air Conditioning (TRL 5)
- ABR: Absorption Refrigeration System (TRL 3)
- Heating by direct usage of FC waste heat (TRL 7)

#### Hydrogen Powered Air Conditioning HyPAC



- → Uses pressure difference between H2 storage and fuel cells
- $\rightarrow$  Provides cooling power

#### **Absorption Refrigeration System ABR**









# Investigation of alternative cooling/heating technologies

#### **Project results and conclusion:**

- ✓ Identified saving potential for **HVAC yearly energy** consumption **10..15%** (6000 8000 kWh/year)
- ✓ **HyPAC ready for demonstration** on train; further investigation on weight, dimensions and costs are needed
- ABR needs higher waste heat temperatures, results become relevant in HT-FC applications
- ✓ Heating by direct usage of waste heat from fuel cell system should be applied
- → Saving potential for HVAC in hydrogen trains is relevant and further development and optimization is needed

Project objective achieved:

• Identify and benchmark innovative solutions to improve energy efficiency  $\checkmark$ 





Furopean Union



Fuel Cell Hybrid PowerPack for Rail Applications



#### Markus Kordel

**Research Associate** 



## Methods and tools for hybrid trains

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





Co-funded by the European Union

## DLR Research in FCH<sub>2</sub>Rail

Deutsches Zentrum DLR für Luft- und Raumfahrt







**European Union** 





## **FCHPP requirements toolchain** Geospatial assessment and simulation

- DLR developed a data-driven toolchain to derive requirements on FCHPP component dimensioning
- It includes:
  - a timetable input module
  - a geospatial infrastructure module (routing and elevation profile production)
  - a use case module
  - a longitudinal dynamic simulation module to determine traction power at wheel

| timetable input                                                                                                                     |              | e input             | geospatial infrastructure                                                                             | e use cases                                                                                  | simulation                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Extraction of operational data                                                                                                      |              |                     | Extraction of infrastructure data                                                                     | Use-case derivation                                                                          | Mechanical energy simulation and derivation of<br>FCHPP requirements |
| Data source: Public timetables<br>Parameters: Trip times, stop times,<br>circulations, station count, start-end-stations,<br>routes |              |                     | Data sources: Open Street Map, Jaxa DSM<br>Parameters: Line lengths, autonomies, elevation<br>profile | Data source: Open Street Map<br>Parameters: Stop distances, max speeds, velocity<br>profiles | Data source: Use-case data model                                     |
| Schedule                                                                                                                            |              | e<br>Departure time | Distance Arrival                                                                                      | Arrival                                                                                      | 2500 Braking<br>Traction<br>2000 Elec. Traction                      |
| Station 1                                                                                                                           | Arrivartinic | 15:42               | Surface                                                                                               |                                                                                              | 1500                                                                 |
| Station 2                                                                                                                           | 15:45        | 15:46               | (m.a.s.l.)                                                                                            | Inter-                                                                                       | E 1000                                                               |
| Station 3                                                                                                                           | 15:49        | 15:49               | STEPTING IT STO                                                                                       | mediate                                                                                      |                                                                      |
| Station 4                                                                                                                           | 15:53        | 15:53               | 16 HI S & Call Sector                                                                                 | stations                                                                                     | <b>E</b> 500                                                         |
| Station 5                                                                                                                           | 16:07        | 16:07               | and the second statement with the                                                                     |                                                                                              | 0                                                                    |
| Station 6                                                                                                                           | 16:32        | 16:32               | Autonomy                                                                                              |                                                                                              | -500                                                                 |
| Station 7                                                                                                                           | 16:48        | 16:54               | E DY Y That                                                                                           | 2                                                                                            |                                                                      |
| Station 8                                                                                                                           | 17:33        | 17:34               | the states of the                                                                                     |                                                                                              | 100 1 1200                                                           |
| Station 9                                                                                                                           | 17:52 17:52  | 17:52               |                                                                                                       | <b>U</b>                                                                                     |                                                                      |
| Station 10                                                                                                                          | 18:02        | 18:02               | the stand of the second                                                                               | /                                                                                            | 5 80 1 1 V 9                                                         |
| Station 11                                                                                                                          | 18:09        | 18:09               | · A list have been a second                                                                           | Speed Limits [km/h]                                                                          |                                                                      |
| Station 12                                                                                                                          | 18:23        | 18:23               |                                                                                                       | • 20                                                                                         |                                                                      |
| Station 13                                                                                                                          | 18:43        | 18:44               | Distance                                                                                              | • 65                                                                                         |                                                                      |
| Station 14                                                                                                                          | 19:02        | 19:03               | under Elecrification                                                                                  | • 90                                                                                         | > 400 5                                                              |
| Station 15                                                                                                                          | 19:13        | 19:13               | caternary Not electrified                                                                             | - 120                                                                                        | 20 200                                                               |
| Station 16                                                                                                                          | 19:29        | 19:29               | · Electrified                                                                                         | • 150                                                                                        |                                                                      |
| Station 17                                                                                                                          | 19:42        |                     |                                                                                                       | • 160                                                                                        | 0 200 400                                                            |
|                                                                                                                                     |              |                     | Departure                                                                                             | Departure • 200                                                                              | Distance in km                                                       |

Kühlkamp, Florian und Schenker, Moritz und Pagenkopf, Johannes und Dittus, Holger und Herwartz, Sebastian und Fernández Del Rey, Abraham und Varela, Maider (2022) <u>The</u> <u>FCH2RAIL Project: A Demonstration of a Modular Fuel Cell Hybrid Power Pack.</u> In: 2022 Conference Proceedings Transport Research Arena, TRA Lisbon 2022. TRA - Transport Research Arena, 2022-11-14 - 2022-11-17, Lissabon. doi: <u>10.1016/j.trpro.2023.11.615</u>. ISSN 2352-1457.

Herwartz, Sebastian und Kühlkamp, Florian und Pagenkopf, Johannes und Fernandez del Rey, Abraham und Valera, Maider und Martin-Carillo, Antonio und Ganhao, Francisco (2022) <u>Bi-Mode Hydrogen Train Requirements Using Geospatial Line Assessment.</u> World Congress on Railway Research 2022, 2022-06-06 - 2022-06-10, Birmingham, UK.



## FCHPP requirements toolchain Energy management + block sizes

- DLR developed a data-driven toolchain to derive requirements on FCHPP component dimensioning
- It includes:
  - a timetable input module
  - a **geospatial infrastructure module** (routing a elevation profile production)
  - a use case module
  - a **longitudinal dynamic simulation module** to determine traction power at wheel
  - an energy minimizing control strategy (SEnSOR)
  - a hybridization framework to derive meaningful FC and BAT block sizes

Herwartz, Sebastian und Kühlkamp, Florian und Pagenkopf, Johannes und Fernandez del Rey, Abraham und Valera, Maider und Martin-Carillo, Antonio und Ganhao, Francisco (2022) <u>Bi-Mode Hydrogen Train Requirements Using Geospatial Line Assessment.</u> World Congress on Railway Research 2022, 2022-06-06 - 2022-06-10, Birmingham, UK.







Co-funded by the European Union

Partnership

the DLR toolchain enables a rapid investigation of single lines and entire networks

Kühlkamp, Florian und Schenker, Moritz und Pagenkopf, Johannes und Dittus, Holger und Herwartz, Sebastian und Fernández Del Rey, Abraham und Varela, Maider (2022) <u>The</u> <u>FCH2RAIL Project: A Demonstration of a Modular Fuel Cell Hybrid Power Pack.</u> In: 2022 Conference Proceedings Transport Research Arena, TRA Lisbon 2022. TRA - Transport Research Arena, 2022-11-14 - 2022-11-17, Lissabon. doi: <u>10.1016/j.trpro.2023.11.615</u>. ISSN 2352-1457.

### **Publications**





**European Union** 



equirements of gas transportation. Table 1 compares CGHs LHs and CcHs storage

## Summary & Outlook





#### **Summary**

- Research tool-chain was set up:
  - requirement analysis → FCHPP layout → energy management / hybridization → KPI/LCC
- Project data and measurements were used for tool validation

#### <u>Outlook</u>

- ➔ high capacity H2 fast refuelling: not solved, a research topic for next years
- ➡ FCHPP concept: further development for other rail applications, i.e. high power / high energy, locomotives
- → HVAC solutions (HyPAC): to be intensified











Fuel Cell Hybrid PowerPack for Rail Applications



#### Beatriz Nieto Calderón

Head of Engineering Unit



## **Normative Framework & Networking**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





Co-funded by the European Union





Propose a normative framework for hydrogen in railway vehicles

**Development of the fundamental basis of a normative framework for the use of hydrogen technology** in different railway applications across Europe.

- → Identification of the **existing regulatory gaps** for application of hydrogen in the railway sector.
- → Propose actions to solve these gaps and facilitate the introduction of hydrogen technology in the railway sector.
- $\rightarrow$  Networking activities



57

#### Grant Agreement Number: 101006633



**Clean Hydrogen** Partnership

Co-funded by the European Union

#### TRAIN

• Numerous regulatory gaps have been found

LEGISLATIVE GAP ANALYSIS

- Specific regulations for railway systems
- From other industries

#### INFRAESTRUCTURE

- After train experience regulatory gaps that were not currently taken into consideration was identified.
  - Authorisation procedures
  - Technical issues

#### PANTOGRAPH

No new gaps found ۲

#### HYDROGEN REFUELLING

 Certain lack in addressing technical specifications.

ΤΟΥΟΤΑ

Difficulties with standards regarding hydrogen ٠ refuelling protocols for high capacity heavyduty vehicle.

#### TSI

- Interoperability requiring some • type of modification
  - Environmental protection
  - Fire safety on tunnels

...





Fuel Cell Hybrid PowerPack for Rail Application

## RESULTS







**European Union** 

Partnership

### **STAKEHOLDERS**





Co-funded by the European Union

## **NETWORKING ACTIVITIES**







Grant Agreement Number: 101006633

Co-funded by the European Union

Clean Hydrogen Partnership

## CONCLUSIONS



- FCH2RAIL has taken very important steps that would allow the implementation of the hydrogen technology in the railway sector.
- One of the **challenges** of the project has been the **lack of regulations** to follow operational or administrative procedures.
- The **stakeholders engagement** could be **achieved** even in a difficult boundary conditions.
- Important partners from H2 and railway sector could be activated to engage in the normative and standardisation topics. The interest has been quite high. Both sectors are actively and openly discussing the H2 related issues.
- Together with the contributions it was possible to create the results and to align on further future activities:
  - UIC accepted results as input
  - German H2 standardization committee integrated results from the project
  - Spanish AESF used the FCH2Rail results and considers them.

• .....

62







- To continue developing standardization and normalization protocols that have been partly initiated.
- To **continue working on the different committees** for the development of standardization and regulation.
  - IEC TC9 Electrical equipment and systems for railways
    - IEC 63341-1, IEC 63341-2, IEC 63341-3
  - TIR SAE 2601-5
  - ...
- To continue the collaboration with stakeholders and European Projects.
  - Rail4Earth
  - ERA
  - AESF
  - •



63



Fuel Cell Hybrid PowerPack for Rail Applications



#### **Holger Dittus**

Project Manager, Project Coordinator FCH2RAIL



**Deutsches Zentrum** für Luft- und Raumfahrt

## **Project Summary**

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.





Co-funded by the **European Union** 

## Summary?

#### Main Objectives:

- 1. Develop, build, test and homologate a multi-purpose Fuel Cell Hybrid PowerPack
- 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit
- 3. Propose a normative framework for hydrogen in railway vehicles
- 4. Demonstrate competitiveness of fuel cell traction against existing diesel solutions
- 5. Identify and benchmark innovative solutions to improve energy efficiency







65

Co-funded by the European Union

# 4. Demonstration of competitiveness: LCC





Preliminary scenario results, LCC calculations still in progress

I CC of BiMode H2-train



**European Union** 



## 4. Demonstration of competitiveness

#### **Bi-mode H2 Demonstrator Train:**

- ✓ Autonomy 800km achieved
- $\checkmark$  H2 consumption: between 0.14 0.25 kg/100 ton-km (pure H2 feed, real profile, gradients, incl. HVAC)
- ✓ **Traction performance** equal to or better than DMU performance
- ✓ FCHPP **availability** during demonstration phase: 100%
- ✓ Requirements of current DMU **commercial service** on demonstration lines were successfully fulfilled

#### **Theoretical analysis:**

✓ Refueling time can be competitive with DMU





**Refueling competitiveness (theoretical analysis):** 

- Approx. 20 minutes for full refueling (similar to DMU)





European Union

→ Demonstrate competitiveness of fuel cell traction against existing diesel solutions





# 1. Develop, build, test and homologate a multi-purpose FCHPP

















H2 supply at CNH2









# 1. Develop, build, test and homologate a multi-purpose FCHPP











#### Best Innovation Award 2024









## 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit





|                              | series              |  |  |  |  |  |
|------------------------------|---------------------|--|--|--|--|--|
| Teruel - Zaragoza            | S594                |  |  |  |  |  |
| Valencia - Teruel - Zaragoza | S599                |  |  |  |  |  |
| Zaragoza - Canfranc          | S596                |  |  |  |  |  |
| Zaragoza - Canfranc          | S599                |  |  |  |  |  |
| Madrid - Soria               | S598                |  |  |  |  |  |
| Madrid - Soria               | S599                |  |  |  |  |  |
| Madrid – Talavera (*)        | S599                |  |  |  |  |  |
| A Coruña - Ferrol            | <u>\$594</u>        |  |  |  |  |  |
| A Coruña - Lugo - Monforte   | <u>\$594</u>        |  |  |  |  |  |
| A Coruña                     |                     |  |  |  |  |  |
| Santiago Domo lino           | Demo line selection |  |  |  |  |  |
| Mine Ou Demo line            |                     |  |  |  |  |  |
|                              |                     |  |  |  |  |  |





## 2. Demonstrate FCHPP in a **Bi-mode Civia multiple unit**

| renfe 🖨          |                                |     |
|------------------|--------------------------------|-----|
| Stemmann-Technik | Infraestruturas<br>de Portugal | FCH |
| adif Hidroge     | ΤΟΥΟΤΑ                         |     |









**European Union** 

| 2. Demonstrate FCHPP in a   |  |
|-----------------------------|--|
| Bi-mode Civia multiple unit |  |







adif Hidrogeno TOYOTA

C4F

Infraestruturas de Portugal FCH<sub>2</sub>RAIL

Fuel Cell Hybrid PowerPack for Rail Applications

Final Event

renfe









Crean Hydrogen Partnership Co-funded by the European Union




## 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit











**European Union** 



# 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit



Co-funded by the European Union





## 2. Demonstrate FCHPP in a Bi-mode Civia multiple unit







# 3. Propose a normative framework for hydrogen in railway vehicles







Co-funded by the European Union

Clean Hydrogen Partnership



# 5. Identify and benchmark



European Hydrogen Energy Conference 18-20 May, 2022. Madrid, Spain

Using Absorption Refrigerator and Metal Hydrides in Hydrogen

Fuel Cell Trains: Draft Design Process and Feasibility M. Kordel'', K. Knetsch<sup>2</sup>, F. Heckert<sup>1</sup> and L. Boeck<sup>2</sup>

> <sup>1</sup> German Aeruspace Center, Pfoffmuuddring 38-40, 70569 Statzgart, Germany 'Eairedy Transport Leipeig Guild & C.s. KG, Industriastrass 60, 04435 Schleuditz, Germany (\*) markus.kordel@dlr.de

HVAC installations on trains are the 2nd largest consumer of energy after traction. For long-distance trains this can be

15% to 20% and for regional vehicles up to 40% of the total energy requirement [1, 2]. An annual energy demand for heating, ventilation and air conditioning (HVAC) of 54.7 MWh in a local tram train was described for a specific project

of 3.2 tH tper year, if HVAC is performed with electrical power only. To reduce this energy demand, we investigate the feasibility and benefits of Hydrogene Powered Air Conditioning (HyPAC) and absorption AC in a simulation study. Both technologies use the energy which is already on board. The HyPAC exploits the pressure difference between hydrogen tank, while the absorption AC relies on water heat from the fuel cell system.

**Research** paper

[3]. For fuel cell trains with an efficiency of appr. 50 %, this number would lead to an additional hydrogen consumpt

Within the project FCH2Rail, a hydrogen fuel cell regional train will be demonstrated and to outline future efficiency improvements, the

feasibility of two heating, ventilation and Air-Conditioning (HVAC)

Introduction

battery electric and hy

therefore be reduced

systems (example in Figure 1) will. The energy consump impose a higher power For overhead line ind



Proceedings of the 4<sup>th</sup> International Railway Symposium Aachen 2023

energy a simu

refrige of Eur Session 14 Markus Kordel, Matthew Maikel Heeland, Kevin Knetsch

#### Waste Energy AC Technologies in H2-Multiple Units

Kordel, Markus<sup>1</sup>, Heeland, Matthew Maikel<sup>2</sup>, Knetsch, Kevin<sup>2</sup> <sup>1</sup> German Aerospace Center – Institute of Vehicle Concepts

<sup>2</sup> Wabtec Corporation

#### Summary

The Henting Ventilation and Air Conditioning (HVAC) systems require up to 40 % of the overall energy demand in regional railway vehicles. Inproving efficiency of the whole train system is especially important in non-catenary or hybrid rolling stock, such as hybrid fuel cell multiple units. One approach can be the usage of unused energy (very ensure), which can be autochost and storage another and the call





Grant Agreement Number: 101006633

Co-funded by the European Union

## Summary

## Main Objectives:

- ✓ Develop, build, test and homologate a multi-purpose
  Fuel Cell Hybrid PowerPack
- ✓ Demonstrate FCHPP in a Bi-mode Civia multiple unit
- Propose a normative framework for hydrogen in railway vehicles
- ✓ Demonstrate competitiveness of fuel cell traction against existing diesel solutions
- ✓ Identify and benchmark innovative solutions to improve energy efficiency







78

Co-funded by the European Union

## More info on www.fch2rail.eu

#### Train Demonstrator:

- 3 car Civia Unit with 2 FCHPP
- Pantograph for 3kV DC catenary

## ESS:

- Max Power: 1044 kW
- Capacity: 238 kWh

### Fuel Cells:

- Six Toyota 2nd generation Fuel Cell Modules
- 80 kW each, 480 kW in total

#### H2 Storage:

- 160 kg @350 bar in total, type III
- 4 racks, 8 vessels/rack, 5 kg/vessel



Addif

ΤΟΥΟΤΑ

### **Demonstration campaign:**

- Several lines in Spain and Portugal
- 10,000 km in H2 mode
- 6,000 km in electric mode
- >2,000 kg H2 consumed
- >800 km autonomy





#### Testing the FCHPP



https://youtu.be/mC7EGb9VA7w

#### Train transformation



https://youtu.be/bFBR6nhyEVI

#### The Journey Begins!



https://youtu.be/s4JfnDbrLW8

#### **HRS Service**



#### H2 Train Service Experience



https://youtu.be/fFuYwuVSyll

Valérie Bouillon-Delporte Clean Hydrogen Partnership HYDROG





















**European Union** 

Partnership



**Research Projects** 

#### **Project Advisory Board**



#### Industry, administration



Grant Agreement Number: 101006633

Clean Hydrogen Partnership







## Thank YOU for your attention!



#### **Project Coordination**

German Aerospace Center (DLR) Institute of Vehicle Concepts

Pfaffenwaldring 38–40 70569 Stuttgart Germany

Holger Dittus holger.dittus@dlr.de

#### **Technical Coordination**

Construcciones y Auxiliar de Ferrocarriles (CAF)

J.M. Iturrioz, 26 20200 Beasain Spain

Eva Terron eterron@caf.net















# GOODBYE AND SAFE JOURNEY

WARRANT CONTRACTOR CONTRACTOR CONTRACTOR

TERUS

TIT

TOTO TOTO TO